随着大模型市场竞争快速展开,谷歌大幅增加了TPU设计服务订单,使博通一跃成为仅次于英伟达的AI芯片厂商,Semianalysis预估,AI芯片会在2024年给博通带来80亿~90亿美金的营收。
不止谷歌,meta、亚马逊、微软等大厂都在加大自研AI服务器芯片的投入力度,找芯片设计服务外包合作伙伴的需求只增不减,此时,以博通、Marvell为代表的芯片设计服务公司的商机会越来越多。
互联网大厂自研AI服务器芯片,由于研发难度很大,这些大厂短时间内又难以形成有足够技术和经验积累的团队,因此,选择外包,找芯片设计服务合作伙伴就成为了不二选择。例如,谷歌开发的两种Arm服务器CPU,其中一款代号为“Maple”,是基于Marvell的技术。
另外,谷歌自研的TPU用于取代英伟达的GPU,谷歌设计的芯片蓝图,都由博通进行物理实现。物理实现是将逻辑电路转换为有物理连接的电路图的过程,博通绘制好物理版图后,再送到台积电流片,流片成功后的芯片正式进入制造环节,整个过程都需要博通深度参与。
数据中心中成百上千个高性能处理器共同运作,它们之间的通信就成为了大问题,这也是当下数据中心性能损耗的主要来源。
互联网和 IT 设备大厂自研 AI 芯片的核心动机是降低成本。当然,自研芯片的前提是自身有很大的需求量,否则自研没有意义。这些大厂的巨量规模能够分摊芯片研发成本,随着产量的增加,单位芯片的成本会降低。通过自研,这些大厂可以直接控制芯片的设计和生产成本,从而减少对外部供应商的依赖。这种成本控制能力使它们能够更有效地管理运营支出,提高整体利润率。自研芯片还可以优化供应链管理,减少中间环节,从而降低采购成本和物流成本。此外,自研芯片可以根据云服务的具体需求进行定制,避免不必要的功能和性能过剩,进一步降低生产成本。
通过自研芯片,这些大厂能够掌握更多的议价权和定价权,避免成为英特尔、英伟达等传统芯片商的“打工仔”。这不仅有助于提升利润空间,还能够在价格竞争中保持灵活性,根据市场情况调整定价策略。
自研芯片还可以帮助这些大厂完善软硬件生态系统,它们能够根据自家的业务需求和特点定制芯片,从而实现硬件与软件之间的无缝对接和优化。自研芯片还可以保持技术创新,随着云计算、大数据、人工智能的快速发展,数据中心面临的工作负载越来越多样化,自研芯片使这些大厂能够快速响应市场变化,及时推出符合新需求的产品和服务。
互联网和 IT 设备大厂自研 AI 芯片的核心动机是降低成本。当然,自研芯片的前提是自身有很大的需求量,否则自研没有意义。这些大厂的巨量规模能够分摊芯片研发成本,随着产量的增加,单位芯片的成本会降低。通过自研,这些大厂可以直接控制芯片的设计和生产成本,从而减少对外部供应商的依赖。这种成本控制能力使它们能够更有效地管理运营支出,提高整体利润率。自研芯片还可以优化供应链管理,减少中间环节,从而降低采购成本和物流成本。此外,自研芯片可以根据云服务的具体需求进行定制,避免不必要的功能和性能过剩,进一步降低生产成本。
通过自研芯片,这些大厂能够掌握更多的议价权和定价权,避免成为英特尔、英伟达等传统芯片商的“打工仔”。这不仅有助于提升利润空间,还能够在价格竞争中保持灵活性,根据市场情况调整定价策略。
自研芯片还可以帮助这些大厂完善软硬件生态系统,它们能够根据自家的业务需求和特点定制芯片,从而实现硬件与软件之间的无缝对接和优化。自研芯片还可以保持技术创新,随着云计算、大数据、人工智能的快速发展,数据中心面临的工作负载越来越多样化,自研芯片使这些大厂能够快速响应市场变化,及时推出符合新需求的产品和服务。
互联网和 IT 设备大厂自研 AI 芯片的核心动机是降低成本。当然,自研芯片的前提是自身有很大的需求量,否则自研没有意义。这些大厂的巨量规模能够分摊芯片研发成本,随着产量的增加,单位芯片的成本会降低。通过自研,这些大厂可以直接控制芯片的设计和生产成本,从而减少对外部供应商的依赖。这种成本控制能力使它们能够更有效地管理运营支出,提高整体利润率。自研芯片还可以优化供应链管理,减少中间环节,从而降低采购成本和物流成本。此外,自研芯片可以根据云服务的具体需求进行定制,避免不必要的功能和性能过剩,进一步降低生产成本。
通过自研芯片,这些大厂能够掌握更多的议价权和定价权,避免成为英特尔、英伟达等传统芯片商的“打工仔”。这不仅有助于提升利润空间,还能够在价格竞争中保持灵活性,根据市场情况调整定价策略。