安全认知,日见清晰;安全研究,路阻且长;安全行业,大有可为;紧跟创新,保障发展……”在近日举行的第十二届互联网安全大会上,中国工程院院士吴世忠的一番总结,折射了AI(人工智能)时代安全大模型行业的发展现状。
一直以来,技术发展伴生的安全挑战、迭代防护,贯穿着行业发展,也备受各界关注。当天,多位两院院士,中国互联网协会、中国信通院、世界互联网大会等机构组织负责人,以及华为、360、微软等国内外企业代表齐聚,围绕“打造安全大模型”主题,分享来自政产学研用领域的各方观点。
从“百模大战”到探寻更多应用场景
在过去的两年里,随着ChatGPT在全球范围内爆红,AI大模型热潮在国内急速升温,多家互联网巨头纷纷加速布局大模型应用。记者从会上了解到,截至目前,我国已完成备案并上线、能为公众提供服务的生成式人工智能服务大模型达180多个,注册用户数已突破5.64亿。
“AI以激进式的科技创新,全面推进新一轮科技革命和生活赋能。”吴世忠介绍,以颠覆式的应用创新,全面推进新一轮的大国博弈和社会变革。特别是基础模型的突破,展示出强大的新质生产力,激发出科技、经济、社会和国家管理全方位的深刻变化。
中国科学院院士、清华大学计算机系教授张钹也深有感触,大模型的出现标志着AI发展进入新阶段,具备了强大的语言生成能力、人机自然交互能力、迁移(举一反三)能力。“最近一年里,我国在基础模型研发、自然语言处理、多模态生成等领域取得了显著进展,为千行百业的智能化转型提供了坚实支撑”。
“我们已初步构建了较为全面的AI技术产业体系,建成了2500多个数字化车间和智能工厂,经过AI改造研发周期平均缩短20%,生产效率提升35%……”中国信息通信研究院副院长魏亮分享了这样一组数据。他分析认为,大模型技术发展带来高质量算力基础设施和数据集语料库的大量需求,我们要加快推进大模型基础设施化,促进行业应用和中小企业普惠使用,不断创新应用生态、推动纵深发展。
从曾经的“百模大战”,到持续赋能千行百业,再到如今发力探寻具体应用场景。“2024年应该是场景之年,要结合业务找‘明星场景’,然后根据场景设计功能,对大模型进行专项训练。” 360集团创始人周鸿祎认为,我们不能追求全能,通过一个大模型解决所有问题,应该让专业大模型解决专业问题,找到垂直场景和细分切口,并且由多个专业模型组合起来,这样很多问题就可以迎刃而解。
中国工程院院士邬贺铨也提到“协作”的重要性。他认为,需要协作开发行业大模型。这些基础大模型是企业实现数字化转型不可或缺的一环,需要应对包括强大的算力、充足的数据、高水平的研材、新应用的算法等诸多挑战,这就需要大模型提供方与垂直行业紧密合作。
技术向善,也能“向恶”
“ChatGPT问世不到一年,有关人工智能的风险预警,就在科学创新的前沿阵地率先触发。它是典型的两用性技术和双刃剑特性,人们担心技术发展失控、道理伦理失范、网络安全失守。”吴世忠谈到这样一组观察体会——近年来,OpenAI、Meta、DeepMind等国外行业巨头相继加大安全技术和监管措施的投入,国内的百度、阿里、华为、科大讯飞、360、智谱等,也在安全研究上布局投资。这说明,国内外主流厂商逐渐认识到安全研究的重要性,大模型能力增长需要安全研究快速跟进已成为业界共识。
“AI浪潮势不可当。它既是一次工业革命,又是对安全行业的一次机会。”周鸿祎认为,在大模型重塑所有行业、产品时,更多的思考应该是能不能利用AI实现安全技术突破、能不能助力降本增效。以前的“百模大战”解决了大模型从无到有、从0到1的发展过程,如今我们不要再“卷”模型了 ,要重点关注应用层面,其中一个重要场景就是“安全”。
在业界看来,当前AI的发展在基础理论和具体应用上存在诸多不足。“生成式AI存在‘幻觉’缺陷,它会‘胡说八道’,很多情况下还并不知道自己说错了。它和机器产生的错误不一样,后者往往我们可以控制,但前者是本身的错误,是一定会发生且不可控的。这是我们开发应用中需要重点考虑的问题。”张钹这样说。
“AI既有向善的一面,也有向恶的一面。”中国工程院院士、国家数字交换系统工程技术研究中心主任邬江兴认为,AI应用系统安全责任与风险存在严重失衡。AI应用系统网络内生安全的共性问题,在于计算机带来了“娘胎的基因缺陷”,如果不能杜绝软硬件代码设计中的脆弱性,就无法杜绝网络问题。
邬江兴还提到,内生安全的个性问题是当前AI推广应用中的最大障碍,存在着“三大问题”:一是不可解释性,指通过训练拟合阶段的一些工作原理我们并不明确;二是不可判识性,指训练AI的大数据质量高低,直接影响大模型判断结果;三是不可推论性,指AI目前对没有经历过的未知事物无法理解和判断。