首页 > 生活分享 > 免费教学 > Meta首席科学家杨立昆关于AI的7个观点

Meta首席科学家杨立昆关于AI的7个观点

发布时间:2024-06-24 17:20:33来源: 15210273549

杨立昆是法国计算机科学家 Yann LeCun 的中文名,他任 Meta 首席人工智能科学家和纽约大学教授,他带领 Meta 的团队推出了开源大模型领域 Llama。他与 Yoshua Bengio、Geoffrey Hinton 一同获得2018年的图灵奖。2024年3月28日,杨立昆在哈佛大学做了一场学术演讲,其中提到了自己关于 AI 的7个观点。


杨立昆在哈佛大学的演讲现场

1.AI 应该能够理解、记忆、推理、规划

动物和人类可以通过尝试和学习,理解世界是如何运作的,他们可以进行推理和规划,他们有常识,这是今天绝大多数 AI 系统做不到的。

尽管硅谷的炒作总是告诉你 AGI 即将到来,但我们实际上并没有那么接近。我们目前拥有的 AI 系统,在一些能力上极其有限。

如果我们有了接近人类智力的系统,我们就会有能够在20小时练习中学会驾驶汽车的系统,就像任何17岁的青少年那样;我们就会有家用机器人,能够一次性学会清理餐桌和清空洗碗机,就像10岁孩子那样。

所以我们漏掉了一些重要的东西。我们应该让 AI 像人类那样学习世界是如何运作的,不仅仅是从文本中学习,还应该从视频或者其他感官输入中学习。

我们需要一个拥有世界模型,拥有记忆,能够推理,能够规划行动的系统,而且它是可控和安全的,这就是目标驱动的 AI。

2. 现在的大模型没有前途

LLM 以及图像识别、语音识别、翻译等,现在 AI 中所有很酷的这些东西,都归功于自监督学习。

它的工作方式是,你拿一段数据,比如一段文本,以某种方式转换或破坏它,比如用空白标记替换其中的一些单词。然后你训练一些巨大的神经网络来预测缺失的单词,这就是 LLM 的训练方式。

它们工作得很好,是因为 LLM 会在数十万亿个 token 上训练,但这种东西会犯愚蠢的错误。它们并不真正理解逻辑,如果你告诉它们 A 和 B 是一回事,它们不一定知道 B 和 A 也是一回事。它们并不真正理解排序关系的传递性以及类似的东西。它们不会做逻辑推理,你必须明确地教它们做算术,或者让它们调用工具来做算术。

它们对底层现实没有任何了解。它们只是在文本上训练。它们只知道语言中包含的知识。但大多数人类知识实际上与语言无关。

它们也真的不能规划,每当它们看似可以规划时,基本上是因为它们训练过类似的规划,它们基本上只是重复一个非常相似的计划。

3.目标驱动的 AI 系统

我们希望 AI 可以做分层规划。

举个例子,假设我坐在纽约大学的办公室里,我想去巴黎。我不会做毫秒级的计划,这是不可能的,因为我不知道将会发生的情况。我是否必须避开一个我还没看到的特定障碍?红绿灯会是红色还是绿色?我要等多久才能打到出租车?所以,我不能从一开始就计划好一切。

但我能做高层规划,我知道我需要到机场,并登机,这是两个宏观动作,对吧?然后再决定较低层次的子目标,我如何到达机场?嗯,我在纽约,所以我需要下楼到街上打车,就是下一层的目标。我如何到达我要去的街道,我必须坐电梯下去,然后走到街上?我如何去电梯?我需要从椅子上站起来,打开办公室的门,走到电梯,按下按钮。

所以你可以想象有这种分层规划在进行。我们完全不费力气就能做到这一点,动物也能很好地做到这一点。今天没有任何 AI 系统能够做到这一点。

所以我设计了目标驱动的 AI 系统,结构如下:


目标驱动 Al 的模块化认知结构

在这个架构中,有一个感知模块,用来观察世界,并将其转化为对世界的表示;有一个持久记忆模块,用来记录事实;有一个世界模型,这是系统的核心;有一个行动模块,一个成本模块,一个配置器。系统的工作方式如下: